Sabtu, 27 Juni 2015

PASSING GRADE UNHAS 2015


 
JURUSAN IPA
1. Agronomi – UNHAS (29.02%)
2. Arsitektur – UNHAS (39.16%)
3. Biologi – UNHAS (28.77%)
4. Budi Daya Perairan – UNHAS (28.30%)
6. Fisika – UNHAS (29.16%)
7. Geofisika (Meteorologi) – UNHAS (36.66%)
8. Ilmu Hama dan Penyakit Tumbuhan – UNHAS (26.66%)
9. Ilmu Kelautan – UNHAS (33.83%)
10. Ilmu Tanah – UNHAS (29.16%)
11. Kesehatan Masyarakat – UNHAS (28.47%)
12. Kimia – UNHAS (27.77%)
13. Manajemen Hutan – UNHAS (28.05%)
14. Manajemen Sumber Daya Perairan – UNHAS (27.36%)
15. Matematika – UNHAS (29.16%)
16. Nutrisi dan Makanan Ternak – UNHAS (28.88%)
17. Pemanfaatan Sumber Daya Perikanan – UNHAS (23.88%)
20. Produksi Ternak – UNHAS (27.36%)
21. Sastra Arab – UNHAS (24.53%)
22. Sosial Ekonomi Pertanian (Agrobisnis) – UNHAS (28.05%)
23. Sosial Ekonomi Peternakan – UNHAS (24.16%)
24. Statistika – UNHAS (33.38%)
25. Teknik Elektro – UNHAS (39.16%)
26. Teknik Geologi – UNHAS (34.52%)
27. Teknik Mesin – UNHAS (35.55%)
28. Teknik Perkapalan – UNHAS (39.86%)
29. Teknik Pertanian – UNHAS (31.33%)
30. Teknik Sipil – UNHAS (35.55%)
31. Teknologi Hasil Hutan – UNHAS (27.96%)
32. Teknologi Hasil Pertanian – UNHAS (34.44%)

JURUSAN IPS
1. Antropologi Sosial – UNHAS (30.31%)
2. Arkeologi – UNHAS (28.28%)
3. Ekonomi Akuntansi – UNHAS (43.75%)
4. Ekonomi Manajemen – UNHAS (41.18%)
5. Ekonomi Pembangunan – UNHAS (35.78%)
6. Ilmu Administrasi Negara – UNHAS (38.75%)
7. Ilmu Hubungan Internasional – UNHAS (38.90%)
8. Ilmu Hukum – UNHAS (33.75%)
9. Ilmu Komunikasi – UNHAS (33.15%)
10. Ilmu Pemerintahan – UNHAS (33.90%)
11. Ilmu Politik – UNHAS (29.75%)
12. Ilmu Sejarah – UNHAS (28.59%)
13. Sastra Daerah – Untuk Sast.Bugis (Makasar) – UNHAS (23.90%)
14. Sastra Indonesia – UNHAS (27.18%)
15. Sastra Inggris – UNHAS (29.34%)
16. Sastra Perancis – UNHAS (28.62%)
17. Sosiologi – UNHAS (30.09%)


Link Sumber : http://infosbmptn.blogspot.com/2014/12/passing-grade-unhas-2015.html#ixzz3eHDHVMnj

STABILITAS KAPAL

# STABILITAS KAPAL #


 # STABILITAS KAPAL #


Perangkat stabilitas kapal
ada beberapa perangkat atau alat yang di gunakan untuk menjaga stabilitas kapal yaitu sirip lambung, tangki penyeimbang (ballast kapal), dan sirip stabiliser.
  1. Sirip lambung : Sirip lunas atau disebut juga sebagai Bilge keel berfungsi untuk meningkatkan friksi melintang kapal sehingga lebih sulit untuk terbalik dan menjagastabilitas kapal. Biasanya digunakan pada kapal dengan bentuk lambung V.
  2. Tangki penyeimbang Merupakan tangki yang berfungsi menstabilkan posisi kapal dengan mengalirkan air ballast kapal dari kiri ke kanan kalau kapal miring kekiri dan sebaliknya kalau miring kekanan. tangki ini berfungsi untuk menjaga stabilitas kapal
  3. Sirip stabiliser merupakan sirip di lunas kapal yang dapat menyesuaikan posisinya pada saat kapal oleng sehingga dapat menjaga stabilitas kapal
4.      Pada pokoknya, stabilitas kapal dapat digolongkan didalam 2
jenis stabilitas yaitu :
1. Stabilitas kapal dalam arah melintang (sering kali disebut stabilitas melintang)
2. Stabilitas kapal dalam arah membujur (sering kali disebut stabilitas membujur)

Stabilitas melintang adalah kemampuan kapal untuk menegak kembali sewaktu kapal menyenget dalam arah melintang yang disebabkan oleh adanya pengaruh luar yang bekerja padanya.

Stabilitas membujuradalah kemampuan kapal untuk menegak kembali sewaktu kapal menyenget dalam arah membujur yang disebabkan oleh adanya pengaruh luar yang bekerja padanya.

Stabilitas Awal

Stabilitas awal sebuah kapal adalah kemampuan dari kapal itu untuk kembali kedalam kedudukan tegaknya semula sewaktu kapal menyenget pada sudut-sudut kecil ( = 60 ). Pada umumnya stabilitas awal ini hanya terbatas pada pembahasan pada stabilitas melintang saja. Didalam membahas stabilitas awal sebuah kapal, maka titik- titik yang menentukan besar kecilnya nilai-nilai stabilitas awal adalah :

Titik Berat Kapal ( G )
a. Definisi
Titik berat kapal adalah sebuah titik di kapal yang merupakan titik tangkap dari Resultante semua gaya berat yang bekerja di kapal itu, dan dipengaruhi oleh konstruksi kapal.

b. Arah bekerjanya
Arah bekerjanya gaya berat kapal adalah tegak lurus kebawah

c. Letak / kedudukan berat kapal
Titik berat kapal dari suatu kapal yang tegak terletak pada bidang simetris kapal yaitu bidang yang dibuat melalui linggi depan linggi belakang dan lunas kapal

d. Sifat dari letak / kedudukan titik berat kapal
Letak / kedudukan titik berat kapal suatu kapal akan tetap bila tidak terdapat penambahan, pengurangan, atau penggeseran bobot diatas kapal dan akan berpindah tempatnya bila terdapat penambahan, pengurangan atau penggeseran bobot di kapal itu :

1. Bila ada penambahan bobot, maka titik berat kapal akan berpindah kearah / searah dan sejajar dengan titik berat bobot yang dimuat

2. Bila ada pengurangan bobot, maka titik berat kapal akan berpindah kearah yang berlawanan dan titik berat bobot yang dibongkar

3. Bila ada penggeseran bobot, maka titik berat sebuah kapal akan berpindah searah dan sejajar dengan titik berat dari bobot yang digeserkan

Titik Tekan = Titik Apung ( B )
a. Definisi
Titik tekan = Titik apung = Centre of buoyency debuah titik di kapal yang merupakan titik tangkap Resultante semua gaya tekanan keatas air yang bekerja pada bagian kapal yang terbenam didalam air.

b. Arah bekerjanya
Arah bekerjanya gaya tekan adalah tegak lurus keatas

c. Letak / kedudukan titik tekan/titik apung
Kedudukan titik tekan sebuah kapal senantiasa berpindah pindah searah dengan menyengetnya kapal, maksudnya bahwa kedudukan titik tekan itu akan berpindah kearah kanan apabila kapal menyenget ke kanan dan akan berpindah ke kiri apabila kapal menyenget ke kiri, sebab titik berat bagian kapal yang terbenam berpindah-pindah sesuai dengan arah sengetnya kapal.

Jadi dengan berpindah-pindahnya kedudukan titik tekan sebuah kapal sebagai akibat menyengetnya kapal tersebut akan membawa akibat berubah-ubahnya stabilitas kapal tersebut.

Titik Metasentrum ( M )
a. Definisi
Titik Metasentrum sebuah kapal adalah sebuah titik dikapal yang merupakan titik putus yang busur ayunannya adalah lintasan yang dilalui oleh titik tekan kapal

b. Letak / kedudukan titik Metasentrum kapal
Titik Metasentrum sebuah kapal dengan sudut-sudut senget kecil terletak pada perpotomgam garis sumbu dan, arah garis gaya tekan keatas sewaktu kapal menyenget

c. Sifat dari letak / kedudukan titik metasentrum
Untuk sudut-sudut senget kecil kedudukan Metasentrum dianggap tetap, sekalipun sebenarnya kekududkan titik itu berubah-ubah sesuai dengan arah dan besarnya sudut senget. Oleh karena perubahan letak yang sangat kecil, maka dianggap tetap.

Dengan berpindahnya kedudukan titik tekan sebuah kapal sebagai akibat menyengetnya kapal tersebut akan membawa akibat berubah-ubahnya kemampuan kapal untuk menegak kembali. Besar kecilnya kemampuan sesuatu kapal untuk menegak kembali merupakan ukuran besar kecilnya stabilitas kapal itu.

Jadi dengan berpindah-pindahnya kedudukan titik tekan sebuah kapal sebagai akibat dari menyengetnya kapal tersebut akan membawa akibat berubah-ubahnya stabilitas kapal tersebut.

Dengan berpindahnya kedudukan titik tekan B dari kedudukannya semula yang tegak lurus dibawah titik berat G itu akan menyebabkan terjadinya sepasang koppel, yakni dua gaya yang sama besarnya tetapi dengan arah yang berlawanan, yang satu merupakan gaya berat kapal itu sendiri sedang yang lainnya adalah gaya tekanan keatas yang merupakan resultante gaya tekanan keatas yang bekerja pada bagian kapal yang berada didalam air yang titk tangkapnya adalah titik tekan.

Dengan terbentuknya sepasang koppel tersebut akan terjadi momen yang besarnya sama dengan berat kapal dikalikan jarak antara gaya berat kapal dan gaya tekanan keatas. Untuk memperoleh keterangan yang lebih jelas, harap perhatikan gambar dibawah ini


   
2.      

Teori Koppel Dan Hubungannya Dengan Stabilitas Kapal

Yang dimaksud dengan sepasang koppel adalah sepasang gaya yang sama besarnya tetapi dengan arah yang berlawanan. (lihat gambar ).

Apabila pada sebuah benda bekerja sepasang koppel, maka benda tersebut akan berputar. Besarnya kemampuan benda itu berputar ditentukan oleh hasil perkalian antara gaya yang membentuk koppel itu dan jarak antara kedua gaya tersebut.

Apabila sebuah kapal menyenget, pada kapal tersebut akan terjadi sepasang koppel yang menyebabkan kapal itu memiliki kemampuan untuk menegak kembali atau bahkan bertambah menyenget lagi. Untuk memperoleh gambaran yang lebih jelas, harap perhatikan gambar-gambar dibawah ini.

 
1.     
Besarnya kemampuan untuk menegak kembali sebuah kapal sewaktu kapal menyenget dengan suatu sudut tertentu adalah sama dengan hasil perkalian antara gaya berat kapal dan jarak antara gaya berat kapal dan gaya tekanan keatas yang bekerja pada kapal saat tertentu itu.
 
1.      
Besarnya kemampuan untuk menegak kembali kapal itu adalah sebesar = W x GZ.
Atau jika dituangkan dalam bentuk rumus akan berbentuk :

Mp = W x GZ


Dimana Mp adalah Momen penegak

Mungkin saja bahwa dua kapal dengan kondisi sama ukuran, berat benaman,dan sudut sengetnya sama besar, yang demikian itu memiliki stabilitas yang berlainan. Adapun penjelasannya adalah sebagai berikut :

Stabilitas kedua kapal itu dapat berlainan, oleh karena besarnya momen penegak ( Mp = W x GZ ), maka satu-satunya alasan yang menyebabkan momen kedua kapal itu tidak sama adalah faktor GZ = lengan penegak. Besarnya lengan penegak kedua kapal itu tidak sama besar disebabkan oleh karena kedudukan titik berat kedua kapal itu tidak sama tinggi (lihat gambar dibawah ini)

 
1.       
2.      Mp = W x GZ Mp = W x GZ
3.      
Jika berat benaman kedua kapal = 15.000 ton, maka
Dan lengan penegak kapal A = 0,45 meter
Lengan penegak kapal B = 0,30 meter
Perhitungannya :

W = 15.000 ton W = 15.000 ton
GZ = 0,45 meter, maka GZ = 1 kaki, maka
Mp = 15.000 ton x 0,45 meter Mp =15.000 ton x 0,30 meter
= 6.750 ton meter = 4.500 ton meter


Contoh Soal :
1. Apabila pada sebuah kapal yang berat benamannya 5.000 ton yang sedang mengoleng sehingga jarat antara gaya berat dan gaya tekan keatasnya = 0,90 meter, berapa besarkah momen penegak kapal itu.

Penyelesaian :
Diketahui : W = 5.000 ton
GZ = 0,90 meter Ditanyakan : Momen koppel Jawab : Mp = W x GZ
= 5.000 ton x 0,90 meter
= 4.500 ton meter

Kesimpulan-kesimpulan yang dapat ditarik dari rumus Mp = W x
GZ adalah :
1. Apabila W semakin besar, maka Mp pun semakin besar
2. Apabila GZ semakin besar, maka Mp pun semakin besar
3. Apabila W tetap, maka besarny a nilai M sebanding dengan nilai GZ artinya bahwa MP merupakan fungsi dari GZ artinya bahwa semakin besar nilai GZ maka semakin besar pula nilai M, semakin kecil nilai GZ semakin kecil pula nilai M tersebut. Jika hubungan antara kedua faktor itu dituangkan didalam bentuk rumus, maka rumus itu akan berbentuk :

Mp = f(GZ) baca : Mp adalah fungsi GZ artinya bahwa besarnya nilai MP adalah semata-mata tergantung dari nilai GZ. Jarak antara gaya berat kapal (berat benaman kapal) dan gaya tekanan keatas itu disebut : Lengan koppel.

Apabila momen yang terjadi akan menegakan kembali kapal yang sedang menyenget, maka jarak antara berat benaman kapal dan gaya tekan keatas itu sering disebut Lengan penegak, sedangkan apabila momen yang terjadi akan mengakibatkan bertambah besarnya senget kapal, maka jarak antara berat benaman dan gaya tekan keatas itu seringkali juga disebut Lengan penyenget.

Alasan yang dipergunakan sebagai dasar penamaan nilai GZ yang demikian itu adalah disebabkan oleh karena momen yang terjadi oleh sepasang koppel itu akan mengakibatkan tegak kembalinya kapal yang sedang dalam keadaan miring.

Apabila sebuah kapal yang sedang menyenget dengan sudut senget sedemikian rupa sehingga kedudukan titik B nya berada tegak lurus dibawah titik G nya, maka pada saat itu kapal tidak memiliki kemampuan untuk menegak kembali. Hal ini disebabkan karena momen penegaknya pada saat itu sama dengan nol, sebab besarnya lengan penegak pada saat sama dengan nol.

Untuk memperoleh gambaran yang lebih jelas, harap perhatikan uraian yang disertai dengan penjelasan seperti tersebut dibawah ini
 
1.      

Sesuai dengan gambar tersebut diatas maka gaya berat kapal berimpit dengan gaya tekan keatas, sehingga jarak antara kedua gaya tersebut adalah sama dengan nol.
Selanjutnya sesuai dengan rumus :

Mp = W x GZ

Jika nilai GZ = 0
Maka : Mp = W x 0 = 0

Hal ini berarti bahwa jika momen penegaknya = 0, maka akibatnya bahwa pada saat itu dalam keadaan stabilitas netral, artinya bahwa pada saat itu kapal tidak mempunyai kemampuan untuk menegak kembali.